
JOURNAL OF SOLID STATE CHEMISTRY 49, l-5 (1983) 

Preparation, Crystallization, and Magnetic Properties of Amorphous 
FeIOO-xBx (18 I x S 42) 

F. KANAMARU, S. MIYAZAKI, M. SHIMADA, AND M. KOIZUMI 

Institute of Scientific and Industrial Research, Osaka University, 
Mihogaoka, Ibaraki, Osaka 567, Japan 

K. ODA 

Research Institute for Non-crystalline Matefials, School of Engineering, 
Okayama University, Tsushima, Okayama 700, Japan 

AND Y. MIMURA 

Central Laboratory of KDD, Nakameguro, Meguro-ku, Tokyo 153, Japan 

Received October 11, 1982; in revised form February 18, 1983 

Amorphous Felw-xB, alloys were prepared by the rf-sputtering method in a chemical composition 
range of 18 5 x 5 42. The crystallization temperature of the amorphous alloys increases with the B 
contents up to near x = 36, above which the crystallization temperature decreases monotonically. This 
anomaly is reflected in the composition dependence of the Curie temperature and of the coercive force 
of the amorphous alloys. 

A large number of measurements on 
physical properties as well as on the struc- 
ture of amorphous Fe-B alloys have been 
made in the last few years (1-4). It is well 
known that the physical properties of such 
amorphous alloys strongly depend on the B 
content (5-9). These studies have been lim- 
ited to the narrow composition range of 11 
I x I 25, because most of the amorphous 
alloys were prepared by rapid quenching 
from the melt, with composition ranges for 
the eutectic composition near 20 at.% B. 
For further understanding of the properties 
of the amorphous Fe-B alloys as a function 
of B content, a few studies have been done 
on vapor-deposition films with higher boron 
content (10-14). 

In this work, a co-sputtering method was 
applied for preparation of the amorphous 
Felm-xBx alloys. A crystallochemical char- 
acterization of the vapor-deposited 
FeloaPxB, (13 I x 5 42), as well as the com- 
position dependence of the crystallization 
temperature, the Curie temperature, and 
the coercive force of the alloys, is de- 
scribed in this paper. 

The t-f-sputtering apparatus used for 
preparation of amorphous Feloa+B, alloys 
was a ULVAC-SBR-1104 unit. A target 
was placed on the lower electrode and a 
substrate was attached to the center of the 
upper electrode. The targets used for co- 
sputtering are composed of an Fe disk (100 
mm +), geometrically arranged B disks 
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FIG. 1. Typical assembly of the target for co-sputter- 
ing. 

(11.3 mm $), and small square Fe foils (3 x 
3 to 8 x 8 mm*) as shown in Fig. 1. The B 
area coverage on the target was adjusted to 
a desired value by changes in both the num- 
ber of the B disks (33-43) and in the dimen- 
sion of the square Fe foil. The square Fe 
foils were used for control of the B area 
coverage on targets with low B area cover- 
age. Both a slide glass and a polyimide film 
were used as the substrate. Rf-sputtering 
was carried out by using Ar gas as a sput- 
tering gas. 

Crystallochemical Characterization 

The chemical composition of the vapor- 
deposited alloys was determined by atomic 
absorption spectroscopy. As shown in Fig. 
2, it is confirmed that the average chemical 
composition of the alloys is in proportion to 
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FIG. 2. Chemical composition of the sputter-depos- 
ited Fe,m-xB, alloys vs B area coverage on target. 

the area coverage of B on the targets, even 
though the atomic ratio of B to Fe in the 
alloys is lower than the area ratio of B to Fe 
on the targets. 

The homogeneity of the composition in 
each alloy was checked using an electron 
probe microanalyzer. The result showed 
that the alloys prepared by co-sputtering 
have a uniform distribution of B and Fe, 
despite the use of the heterogeneous com- 
posite target. 

The alloy of 13 at.% B exhibits X-ray dif- 
fraction lines which are attributed to an (Y- 
type Fe crystalline phase (perhaps B-con- 
taining a-Fe), while the alloys of 18 to 42 
at.% B exhibit broad halo patterns. The 
electron diffraction patterns taken on the 
latter samples also exhibit only halo pat- 
terns, indicating that the alloys of 18 to 42 
at.% B produced by t-f-sputtering are amor- 
phous . 

Crystallization of the Amorphous Feloo-xB, 
Alloys 

The crystallization process of the amot= 
phous alloys was examined by both DTA 
and X-ray diffraction methods. The results 
are listed in Table I. 

The manner in which amorphous alloys 
of less than 25 at.% B crystallized on heat- 

TABLE I 

HEATTREATMENTCONDITIONS AND PRECIPITATED 
CRYSTAL PHASES 

Tem- 
pera- 

As-sputtered ture 
Composition film (“Cl Crystal phases 

Fe&,8 Amorphous 460 a-Fe, Fe,B 
Fe&o Amorphous 460 a-Fe, Fe,B 
Fed23 Amorphous 440 a-Fe, Fe,B 

460 o-Fe, FezB 
Fed%9 Amorphous 480 a-Fe, FezB 

Fed%8 Amorphous 460 FeB, Fe2B, a-Fe 
Fed%2 Amorphous 410 FeB 

460 FeB, Fe*B, a-Fe 
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FIG. 3. Crystallization temperature vs B content for 2 
the amorphous Fe,oo-xB, alloys at 10 deg/min com- 
pared to some typical works published previously. 0 
present work; --- (Ref. (5)); X (Ref. (11)). 

ing was almost the same as that reported in 
the literature (20, Z6-18), e.g., Fe3B and (Y- 
Fe deposited in the temperature range from 
400 to 500°C. No FesB crystallized from the 
amorphous alloys of more than 29 at.% B in 
the same temperature range. Fe2B and o-Fe 
crystallized from the amorphous alloys of 
29 to 36 at.% B. On annealing the amor- 
phous alloys of 38 and 42 at.% B, FeB (B-B 
distance; 0.177 nm (19)) deposited in the 
amorphous matrix; the crystallization of 
Fe2B and Q-Fe occurred on further anneal- 
ing at higher temperature. 
(42 at.% B) 
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FIG. 4. Temperature dependence of the magnetiza- 
tion at 5 kOe for the amorphous Fe,oo-,B, alloys. 

The crystallization temperature (Tcryst) of 
the amorphous alloys, determined from the 
first exothermic peak in DTA curve (10 deg/ 
min), is plotted as a function of B content in 
Fig. 3. Tcryst increases with increase in the 
amount of B in the composition range from 
18 to 36 at.% B, while Tcryst decreases with 
increase in B in the composition range of x 
larger than 36. 

amorphous 398°C FeB + “amorphous” 

I 460°C 

Fe$ + cu-Fe 

It has been demonstrated that some non- 
crystalline alloys have local atomic ar- 
rangements similar to their crystalline 
counterparts (20, 21). If this concept is ap- 
plied to the present amorphous alloys, it is 
expected that the first-deposited crystalline 
phase reflects the local short-range order of 
the amorphous state. 

Magnetic Properties 

Figure 4 shows the temperature depen- 
dence of the magnetization at 5 kOe. The 



4 KANAMARU ET AL. 

OL ’ . . . ’ 
0 10 20 30 LO 50 

B Content (at%) 

FIG. 5. Curie temperature vs B content for the amor- 
phous FeIW-xB, alloys. 0 present work; --- (Ref. (22)); 
-.-. (Ref. (IS)). 

as-deposited amorphous alloys on a poly- 
imide film were subjected to the magnetic 
measurement without separating the amor- 
phous alloys from the substrate. Therefore, 
the values of magnetization in Fig. 4 (unit of 
longitudinal axis) are represented on an ar- 
bitrary scale. As seen in Fig. 4, the magne- 
tization for the amorphous alloys of less 
than 29 at.% B decreases gradually with ris- 
ing temperature up to 400-XWC, and then 
increases rapidly at the crystallization tem- 
perature before the magnetization van- 
ishes. The Curie temperature (T,) of the 
amorphous alloys was determined from the 
(T* vs T curve over the temperature. On the 
other hand, the magnetization of the amor- 
phous alloys of 36, 38, and 42 at.% B van- 
ishes at the T, of the amorphous alloys and 
then increases rapidly at a higher tempera- 
ture corresponding to the crystallization 
process as described above. Figure 5 shows 
the composition dependence of T, of the 
amorphous alloys. T, increases with in- 
creasing B content up to about 33 at.% B, 
and decreases with B content in the compo- 
sition range beyond 36 at. % B . 

The coercive force (H,) of the amorphous 
alloys was determined from the magnetiza- 
tion-auulied magnetic field loous obtained 

Et content (“I~) 

FIG. 6. Coercive force (H,) vs B content for the 
amorphous Fel(Kl-xB, alloys deposited onto a slide- 
glass substrate. 

at room temperature by a vibrating sample 
magnetometer. The measurement was car- 
ried out on the as-deposited amorphous al- 
loys on a slide-glass substrate without an- 
nealing them, because of the difficulty of 
removing the amorphous alloys from the 
substrate. Therefore, the H, values ob- 
tained in this work are larger than the re- 
ported ones for the annealed amorphous al- 
loys with the same composition (21, 23). 
The composition dependence of H, is 
shown in Fig. 6. In the range of less than 36 
at.% B, H, decreases with increase of the B 
concentration, while it increases with the B 
content for the higher B compositions. 
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